
1	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Strategic and Operational Decision Support in

Software Quality
Management

Prof. Per Runeson

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Who am I?
•  Professor in Software Engineering, Lund University
•  Leader for the Software Engineering Research

Group at LU and the EASE industrial excellence
center

•  Sabbatical at North Carolina State University,
2011-12

•  Sony Ericsson, part time 2010
•  LU since 1998
•  Q-Labs 1991-1998

SWELL - Swedish V&V Excellence	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Research interests

1995

2011

•  Reliability testing
•  Inspection methods
•  System validation
•  Agile management
•  Test management
•  Unit testing
•  Regression testing
•  Product line testing

Empirical research ���

– surveys, case studies, experiments	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Expectations?

2	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

My goal

Provide some insight to
empirical evidence
available for strategic
and operational
decision support on
software quality.

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Outline

•  Definitions
•  Strategic decision support
•  Operational decision support
•  Making change

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Strategic vs. operational

•  Long-term
•  One-off
•  Functional

organization

•  Mid to short-term
•  Continuous
•  Project organization

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Example Strategic Questions

•  Which quality assurance activities, like inspection
and testing, are conducted when, by whom, and to
what extent?

•  Which testing should be automated first, and what
should not be automated?

•  How much testing to spend on the products vs.
testing the platform?

3	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Example Operational Questions

•  How many defects are found in unit testing?
•  How many test cases remain to be run in system

test?
•  “When to stop testing" is an issue for every project

manager.

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Terms in empirical software engineering

•  Case study
•  Evidence
•  Experiment
•  Mapping study
•  Survey
•  Systematic review

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Outline

•  Definitions
•  Strategic decision support
•  Operational decision support
•  Making change

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Test strategy

•  What…
•  When…
•  By whom..
•  To what extent..

… to be tested…
… and why?

4	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

The testing paradox

Testing purpose
•  Find faults
•  Demonstrate quality

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

What is a failed test?

•  One finds a fault? •  One that fails to
reveal a fault?

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Types of Testing

unit

integration

system

efficiency
maintainability

functionality

white box black box

Level of detail

Accessibility

Characteristics

usability
reliability

module

portability

Stress test	

Unit test	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Strategic decision support
based on systematic literature reviews

5	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Systematic literature reviews 1(3)
[Kitchenham 2007]

Planning the review
–  Identification of the need for a review
– Commissioning a review
– Specifying the research question(s)
– Developing a review protocol
– Evaluating the review protocol

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Systematic literature reviews 2(3)
[Kitchenham 2007]

Conducting the review
–  Identification of research
–  Selection of primary studies
–  Study quality assessment
–  Data extraction and monitoring
–  Data synthesis

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Systematic literature reviews 3(3)
[Kitchenham 2007]

Reporting the review
– Specifying dissemination mechanisms
– Formatting the main report
– Evaluating the report

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Example SLR: What do we know about
defect detection methods?

•  Strategic question: testing or inspection?
•  Available evidence, comparing testing

and inspections (2006):
–  10 experiments
–  2 case studies

•  Scale of experiments: 60-2400 LOC
•  Scale of case studies: 250-6300 defects

6	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

What do we know about defect
detection methods?

12 empirical studies
•  nine experiments on

code defects
•  one experiment on

design defects
•  two case studies on a

comprehensive defect
detection process

•  requirements defects, use inspection (no
empirical evidence)

•  design specification defects, inspections
are more efficient and more effective
than functional testing.

•  code defects, functional or structural
testing is more effective or efficient than
inspection in most studies.

•  effectiveness is low;
25 to 50 % of an artifact’s defects found
in inspection,
30 to 60 % found using testing.

•  efficiency 1 - 2.5 defects per hour

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Group work

•  Glance through ”What do we know…”
•  How valid are the recommendations?
•  For which companies?
•  What is the alternative?

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Strategic decision support
based on mapping study

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Example Mapping Study:
Testing Software Product Lines

074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E SEPTEMBER/OCTOBER 2011 | IEEE SOFTWARE 15

Editor: Tore Dybå
SINTEF
tore.dyba@sintef.no

Editor: Helen Sharp
The Open University, London
h.c.sharp@open.ac.uk

Testing Software
Product Lines
Paulo Anselmo da Mota Silveira Neto, Per Runeson, Emelie Engström,
Ivan do Carmo Machado, Eduardo Santana de Almeida, and Silvio Romero de Lemos Meira

VOICE OF EVIDENCE

INDUSTRY IS INTERESTED in software product lines
(SPLs) for their potential to foster software artifact reuse.
There is also evidence that organizations can develop appli-
cations for SPLs with less effort and time and higher quality
than they can for single systems. Nevertheless, these bene! ts
don’t come for free. To achieve the promised improvements,
the reusable artifacts’ quality must be high. Therefore, qual-
ity assurance in general and testing in particular, which is
still the most common quality assurance technique in indus-
try, are crucial to product line efforts.

The SPL literature distinguishes between two develop-

ment processes—domain and application engineering1—to
produce, respectively, core assets (or platforms) and prod-
ucts.2 Testing is applied throughout the entire SPL life cy-
cle and addresses both core assets and product-speci! c soft-
ware, along with their interactions. In domain engineering,
testing aims to ensure that core assets are working properly;
in application testing, it ensures that the product being pro-
duced is the product speci! ed by the requirements.3 Several

SPL testing approaches address the interactions between
these two development processes—for example, developing
test artifacts in domain engineering and reusing these arti-
facts during application engineering.4

We conducted two parallel, systematic mapping studies to
investigate state-of-the-art SPL testing practices, synthesize
the empirical evidence, and identify gaps between required
techniques and existing approaches in the literature.5,6 Paulo
Anselmo da Mota Silveira Neto and his colleagues in Bra-
zil conducted one study;5 Per Runeson and Emelie Engström
conducted the other in Sweden.6

Here, we summarize the combined
results.

The Mapping Studies
Systematic mapping studies aim at giv-
ing an overview of a research ! eld.
They are as well ordered as systematic
literature reviews (SLRs) but are con-
ducted when the study ! eld isn’t mature
enough to comprise a set of compara-
ble empirical studies. Their intent is to

“map out” the research undertaken rather than answer de-
tailed research questions.7

The Swedish study, which we designate Study.SE here,
started off broadly, based on four questions that were designed
to get an overview of SPL testing challenges and the topics al-
ready studied. It also aimed to identify the journals and confer-
ences that published the research and to classify the research
types. The search was conducted iteratively. The research-

Two SPL development processes—
domain and application engineering—
produce core assets and products,
respectively.

•  Strategic questions: how to
test a product line?

•  Available evidence: 64+45
(=76 unique) papers

•  Type of evidence: 40-52%
solution proposals

7	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Testing Software Product Lines

•  SPLT is a ”discussion topic”

Topics:
•  Testing strategy
•  Testing levels
•  Product variability and traceability
•  Effort reduction
•  Test organization and process

074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E SEPTEMBER/OCTOBER 2011 | IEEE SOFTWARE 15

Editor: Tore Dybå
SINTEF
tore.dyba@sintef.no

Editor: Helen Sharp
The Open University, London
h.c.sharp@open.ac.uk

Testing Software
Product Lines
Paulo Anselmo da Mota Silveira Neto, Per Runeson, Emelie Engström,
Ivan do Carmo Machado, Eduardo Santana de Almeida, and Silvio Romero de Lemos Meira

VOICE OF EVIDENCE

INDUSTRY IS INTERESTED in software product lines
(SPLs) for their potential to foster software artifact reuse.
There is also evidence that organizations can develop appli-
cations for SPLs with less effort and time and higher quality
than they can for single systems. Nevertheless, these bene! ts
don’t come for free. To achieve the promised improvements,
the reusable artifacts’ quality must be high. Therefore, qual-
ity assurance in general and testing in particular, which is
still the most common quality assurance technique in indus-
try, are crucial to product line efforts.

The SPL literature distinguishes between two develop-

ment processes—domain and application engineering1—to
produce, respectively, core assets (or platforms) and prod-
ucts.2 Testing is applied throughout the entire SPL life cy-
cle and addresses both core assets and product-speci! c soft-
ware, along with their interactions. In domain engineering,
testing aims to ensure that core assets are working properly;
in application testing, it ensures that the product being pro-
duced is the product speci! ed by the requirements.3 Several

SPL testing approaches address the interactions between
these two development processes—for example, developing
test artifacts in domain engineering and reusing these arti-
facts during application engineering.4

We conducted two parallel, systematic mapping studies to
investigate state-of-the-art SPL testing practices, synthesize
the empirical evidence, and identify gaps between required
techniques and existing approaches in the literature.5,6 Paulo
Anselmo da Mota Silveira Neto and his colleagues in Bra-
zil conducted one study;5 Per Runeson and Emelie Engström
conducted the other in Sweden.6

Here, we summarize the combined
results.

The Mapping Studies
Systematic mapping studies aim at giv-
ing an overview of a research ! eld.
They are as well ordered as systematic
literature reviews (SLRs) but are con-
ducted when the study ! eld isn’t mature
enough to comprise a set of compara-
ble empirical studies. Their intent is to

“map out” the research undertaken rather than answer de-
tailed research questions.7

The Swedish study, which we designate Study.SE here,
started off broadly, based on four questions that were designed
to get an overview of SPL testing challenges and the topics al-
ready studied. It also aimed to identify the journals and confer-
ences that published the research and to classify the research
types. The search was conducted iteratively. The research-

Two SPL development processes—
domain and application engineering—
produce core assets and products,
respectively.

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Strategic decision support
based on survey and benchmarking

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Example survey:
Industry practice on Unit Testing

vidual software components or a collection of
components. Testers define the input domain
for the units in question and ignore the rest of
the system. Unit testing sometimes requires the

construction of throwaway driver code and
stubs and is often performed in a debugger.”4

Because verbal definitions of unit testing al-
ready exist, I didn’t restrain the discussion as
such. Instead, I aimed for a broader under-
standing of what unit test means and what role
it plays in an organization. I report the results,
structured according to Zachman’s frame-
work, except that no observations were made
regarding the location dimension (where). Fig-
ure 2 (page 26) summarizes the questionnaire
responses. For each item, I first report the fo-
cus group discussions and then the question-
naire results. (Throughout this article, Qn.m
refers to question number m in Figure n.)

What?
Unit testing means testing the smallest sepa-

rate module in the system. Some people (such
as Koomen and Pol3) stress that it’s the smallest
specified module, but opinions differ about the
need for specifications. Regardless, unit testing
is technically oriented, with in/out parameters.

Nothing from the focus group discussions
contradicted this definition. The only varia-
tion was whether developers should specify
modules and tests. Nonetheless, the unit test-
ing practice is sometimes different.

The questionnaire confirmed that respon-
dents considered unit tests to be technical tests
focused on the system’s smallest units (Q2.1–3).
Many disagreed whether they should execute
the unit test in a scaffolding environment or
conduct it in an almost-complete system envi-
ronment (Q2.4). But according to Whittaker,
unit testing should “ignore the rest of the sys-
tem.”4 So, it can be run in the complete system
environment, focusing on the unit under test
and ignoring the rest.

The focus group attendants who also re-
sponded to the questionnaire agreed on the
definitions to a larger extent than the other
respondents.

How?
From the focus group discussions, I found

that companies conduct unit testing on the ba-
sis of the program’s structure (that is, white-
box or grey-box testing). They want the test
cases to be repeatable and also automated
with respect to test execution and result
checking. They can conduct unit testing in the
form of test-driven design.5

The questionnaire indicated that structural

2 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

John Zachman presented a framework for analyzing information systems
architectures.1 The framework has six categories—what, how, where, who,
when, and why—although these terms weren’t originally used. For each
category, questions are defined and tailored to the domain under investiga-
tion. Although Zachman originally intended the framework for information
systems development, he proposed that it might also be used for creating
new approaches to system development.

Joseph Feller and Brian Fitzgerald used the framework to analyze open
source development,2 and Peter Greberg and I used the same principles to
analyze Extreme Programming and the Rational Unified Process.3

In the main article, I use Zachman’s framework to structure the outcome
of the focus group meetings and to define the validation questionnaire.

References
1. J.A. Zachman, “A Framework for Information Systems Architecture,” IBM Systems J., vol.

26, no. 3, 1987, pp. 276–292.
2. J. Feller and B. Fitzgerald, “A Framework Analysis of the Open Source Development Para-

digm,” Proc. 21st Int’l Conf. Information Systems, ACM Press, 2000, pp. 58–69.
3. P. Runeson and P. Greberg, “Extreme Programming and Rational Unified Process—Contrasts

or Synonyms?” Experience Session Proc. European Software Process Improvement and Inno-
vation Conf. (EuroSPI 05), John von Neumann Computer Soc., 2005, pp. 1.1–7.

Zachman’s Framework

 Unit testing Analysis
• Definition
• Strengths
• Problems

• What?
• How?
• Where?
• Who?

Q's

Note

1. Individual
reflection

2. Focus group
discussion

Note
Note

3. Document
and structure

4. Analysis

5. Questionnaire
preparation

7. Analysis6. Conduct

Q&A's
Q&A's

Q&A's

Figure 1. Survey
methodology overview.

•  Benchmarking
against industry peers

•  Focus group format
•  Non-competing

companies

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Industry practice on Unit Testing

•  What?
–  Technical!
–  Specified or not?

•  How?
–  Structure-based
–  Not formally

•  Who?
–  Developer (team)
–  Not test or QA

•  When?
–  Each build/day/week
–  Takes seconds to hours

to run
•  Why?

–  Assuring functionality

8	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

basis is important (Q2.5), although it doesn’t
have to be formally measured through cover-
age measures (Q2.6). Regarding automation,
the automation’s execution is more important
than automatic result checks of test cases
(Q2.7–8). Furthermore, unit tests are docu-

mented in test code rather than in text
(Q2.9–10).

Who?
The focus group agreed that developers and

development teams conduct unit tests. How-

J u l y / A u g u s t 2 0 0 6 I E E E S O F T W A R E 2 5

For each question, respondents chose the best answer from
the following scale: “strongly agree,” “agree,” “neutral,” “dis-
agree,” “strongly disagree,” or “not applicable.”

To what extent do you agree with the statements
below?

What is a unit test?
1. A test of the smallest separate unit
2. A technical test with in/out parameters
3. A test that focuses on separate functions
4. A test that must execute separately from rest of the system

How is a unit test conducted?
5. Based on the program structure
6. Monitored by coverage measurements
7. Automated execution
8. Automated follow-up

How do developers conduct the unit tests?
9. Specified in text
10. Specified in test code
11. Executed by developers themselves

Who decides how the unit test shall be conducted?
12. Developers/testers
13. The test department
14. The quality department

When are the unit tests executed?
15. For each compilation/system build
16. Many times daily
17. At least daily
18. At least weekly

How much time does it take to run all unit tests?
19. Seconds
20. Minutes
21. Hours

Why are unit tests conducted?
22. To ensure that the unit functions as expected
23. To accept a unit from other sources
24. To specify a unit (test first)

25. To improve the product quality in general
26. To meet customer requirements

For each question, respondents chose the best answer from
the following scale: “very good,” “good,” “neutral,” “bad,”
“very bad,” or “not applicable.”

How does the following function in your
organization?

What?
1. Identify suitable units
2. Test GUI components
3. Test data-dependent functions
4. Test depending on external code
5. Test real-time aspects
6. Test case selection
7. Maintenance of test code

How?
8. Specify good unit test cases
9. Automate unit testing
10. Build/tailor frameworks for unit testing
11. Integration with build systems
12. Integration with configuration management systems
13. Integration to trouble-reporting systems
14. Unit test documentation
15. Scaffolding (stubs and drivers)
16. Coverage or other test progress measurements

Who?
17. Developers execute all needed unit tests
18. Unit testing external units is sufficient
19. Testing has sufficient priority and status
20. Developers have sufficient competence and skills to con-

duct unit testing

When?
21. I execute the unit test frequently enough
22. I have clear criteria to judge when the unit test is finished

Why?
23. The developers are motivated to execute unit tests
24. I know that I gain more than the cost for time spent on

unit testing

Questionnaire Instrument

Benchmarking

What?
The focus group participants considered it

a successful practice to unit test modules other
than the one under test. One company applies
test-driven design and has an automated unit
test suite that clearly reveals changes in other
modules. This indicates that unit tests are con-
ducted in an environment where other system
modules exist.

The questionnaire reveals that using unit
testing for external modules wasn’t common
practice but rather a single example (Q3.4).
Furthermore, most organizations can easily
identify units (Q3.1) and maintain unit test
code (Q3.7).

How?
Two companies in the focus group consid-

ered it a strength that they have set up a frame-
work for unit test automation. If this frame-
work has internal support, it will improve the
practice. Furthermore, unit testing should inte-
grate with the build system—that is, compa-
nies should automatically run a selected set of
test cases for every version of the system.

The questionnaire confirms that test au-
tomation and tailoring frameworks for unit
testing are successful practices (Q3.9–10). The
build system was judged neutral to very good
(Q3.11), and the specifications were consid-
ered neutral or good (Q3.8).

Who?
Although the focus group defined unit test-

ing as conducted by developers and develop-
ment teams, they also favored independent or
third-party unit tests. Companies could achieve
this by widening the unit testing scope some-
what—that is, enlarging the group of modules
under test and then allowing testing by both
their own development team and other teams.

Regarding testing competence, companies
considered the SPIN-syd forum for cross-com-
pany learning valuable. However, the ques-
tionnaire didn’t present competency as a
strength. The status and priority given to unit
testing were judged neutral (Q3.19).

When?
Continuous regression tests are a strength.

One company runs automatic tests every
night, including automatic results checking.
Another company runs regression tests when
refactoring the code. It also runs memory tests
continuously, ensuring that the basic function-
ality and characteristics are in place.

This practice isn’t widespread. The ques-
tionnaire shows that regarding unit test execu-
tion’s frequency, the answers range evenly over
the scale (Q3.21).

Why?
For single companies in the focus group,

J u l y / A u g u s t 2 0 0 6 I E E E S O F T W A R E 2 7

0

2

4

6

8

10

12

9.
Auto

mate
 te

sti
ng

10
. B

uil
d/t

ail
or

fra
mew

ork
s

11
. B

uil
d s

yst
em

s

12
. C

on
fig

ura
tio

n

man
ag

em
en

t s
yst

em
s

13
. T

rou
ble

 re
po

rtin
g

14
.D

oc
um

en
tat

ion

15
.Sca

ffo
ldi

ng

16
. C

ov
era

ge

21
. F

req
ue

nc
y

22
. C

rite
ria

23
. M

oti
va

tio
n

24
. G

ain
 aw

are
ne

ss

Very good
Good
Neutral
Bad
Very bad
Not applicable

Whe
n?

How
?

1.
Ide

nti
fy

un
its

2.
GUI c

om
po

ne
nts

3.
Data

 de
pe

nd
en

cy

4.
Ex

ter
na

l c
od

e

5.
Rea

l-ti
me

6.
Te

st
ca

se
 se

lec
tio

n

7.
Main

ten
an

ce

8.
Spe

cif
y t

es
t c

as
es

17
. D

ev
elo

pe
rs

ex
ec

ute
 al

l

18
. E

xte
rna

l u
nit

s

19
. P

rio
rity

 an
d s

tat
us

20
. C

om
pe

ten
ce

 an
d s

kil
ls

Wha
t?

Who
?

Why?

Figure 3. Response
frequencies on
questionnaire regarding
unit test strengths and
weaknesses (Q3.1–24).

ever, they disagreed whether unit tests must be
specified.

The questionnaire confirms that the unit
tests are the development organization’s con-
cern (Q2.11–12). Neither the test organization
nor the quality organization has any say
(Q2.13–14). (Similarly, Koomen and Pol state
explicitly that the developers execute the unit
test,3 but this is implicit in other definitions.)

When?
The focus group mentioned that unit tests

give developers quick feedback. The group
didn’t discuss time in relation to project
phases, although unit tests are implicitly con-
nected to the implementation activities.

How often each company executed the unit
tests varied widely (Q2.15–18), as did the execu-
tion time. Most respondents said that running all
unit tests took just seconds or minutes, but some
respondents had unit test suites that took hours
to execute (Q2.19–21).

Why?
The focus group stated that unit testing’s

main focus is assuring the system’s functional-
ity. Unit testing doesn’t consider any extra-
functional aspects because it runs separately
from the system. For those executing unit tests
in a complete system environment, the distinc-
tion isn’t as clear. The group stressed that test-
ing verifies that a module has the functionality

a developer expects, which isn’t necessarily
what other stakeholders expect. In test-driven
design, unit tests define the problem and can
contribute to less complex solutions when ap-
plying refactoring.

The questionnaire confirms unit testing’s
functional focus (Q2.22). Unit testing’s pur-
pose is related to general quality improve-
ments (Q2.25). In a few cases, companies use
unit testing for internal acceptance (Q2.23) or
as a technical specification (Q2.24). In very
few cases do customers explicitly require unit
tests (Q2.26).

Unit testing strengths
The focus group members discussed their

strengths with regard to unit testing. The con-
versation was an honest sharing of good prac-
tices that other noncompetitive companies could
use. SPIN-syd’s tradition of openness between
peers as well as toward researchers and other ex-
ternal sources6 reduces the risk of people telling
success stories without a solid foundation.

I report the unit testing strengths according
to Zachman’s framework. For the question-
naire and the responses, see the sidebar
“Questionnaire Instrument” and figure 3, re-
spectively. This section discusses the positive
answers, and the next section discusses the
negative answers (Q3.12, 15, 17, 18). Real-
time issues weren’t applicable for many re-
spondents (Q3.5).

2 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

0

2

4

6

8

10

12

14

5.
Stru

ctu
ral

7.
Auto

mate
d e

xe
cu

tio
n

6.
Cov

era
ge

8.
Auto

mate
d f

oll
ow

-up

12
. D

ev
elo

pe
rs/

tes
ter

s

13
. T

es
t d

ep
art

men
t

14
. Q

ua
lity

 de
pa

rtm
en

t

15
. F

or
ea

ch
 bu

ild

19
. S

ec
on

ds

20
. M

inu
tes

Tim
e?

Who

de
cid

es?
How

?

Strongly agree
Agree
Neutral
Disagree
Strongly disagree
Not applicable

1.
Small

es
t u

nit

2.
Te

ch
nic

al

3.
Fu

nc
tio

ns

4.
Sep

ara
te

9.
Spe

cif
ied

 in
 te

xt

10
. S

pe
cif

ied
 in

 te
st

co
de

11
. E

xe
cu

ted
 by

 de
ve

lop
ers

16
. M

an
y t

im
es

 da
ily

17
. A

t le
as

t d
ail

y

18
. A

t le
as

t w
ee

kly

21
. H

ou
rs

22
. U

nit
 fu

nc
tio

ns

23
. A

cce
pt

un
its

24
. S

pe
cif

y u
nit

25
. Im

pro
ve

 qu
ali

ty

26
. C

us
tom

er
req

uir
em

en
ts

Wha
t?

Whe
n?Who

co
nd

uc
ts?

Why?

Figure 2. Response
frequencies on the
questionnaire regarding
unit test definitions
(Q2.1–26).

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Strategic decision support
based on specific experiment

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Background

•  Mobile phones come with third party MIDlets, e.g.
games

•  Verifying compatibility with Java platform is an
extensive task, even with test scripting

Aim
•  Investigate different automated input generation

methods which do not require extensive modeling

A Factorial Experimental Evaluation of
Automated Test Input Generation

– Java Platform Testing in Embedded Devices

Per Runeson, Per Heed, and Alexander Westrup

Department of Computer Science, Lund University
Box 118, SE-211 00 Lund, Sweden

http://serg.cs.lth.se/

Abstract. Background. When delivering an embedded product, such
as a mobile phone, third party products, like games, are often bundled
with it in the form of Java MIDlets. To verify the compatibility be-
tween the runtime platform and the MIDlet is a labour-intensive task,
if input data should be manually generated for thousands of MIDlets.
Aim. In order to make the verification more efficient, we investigate
four different automated input generation methods which do not require
extensive modeling; random, feedback based, with and without a con-
stant startup sequence. Method. We evaluate the methods in a facto-
rial design experiment with manual input generation as a reference. One
original experiment is run, and a partial replication. Result. The re-
sults show that the startup sequence gives good code coverage values for
the selected MIDlets. The feedback method gives somewhat better code
coverage than the random method, but requires real-time code coverage
measurements, which decreases the run speed of the tests. Conclusion
The random method with startup sequence is the best trade-off in the
current setting.

1 Motivation

Many embedded devices, like mobile phones, come with a Java execution platform.
The platform runs third party applications, like games as the most common type,
in the form of Java MIDlets. Some applications are bundled with the embedded
device or possible to download from the supplier’s web site. Hence it is important
for the user’s impression of the product quality, that the platform supports run-
ning the applications, or at least does not crash the embedded device.

Thousands of applications may be downloaded, and hundreds of versions and
variants of the embedded devices are developed. Hence, in order to get a cost
efficient verification of the platform’s interaction with the applications, an au-
tomated approach to input generation must be used, without requiring specific
input modeling for each application. Further, the installation and execution of
the MIDlets must also be efficient. Typically, there is a certain time frame of
hours or days to spend on this particular type of testing, and thus there is a
trade-off between how much time should be spent on running each application,

D. Caivano et al. (Eds.): PROFES 2011, LNCS 6759, pp. 217–231, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Empirical study

•  Method: Evaluate input generation methods in a
factorial design experiment: random, feedback
based, with and without a startup sequence

•  Results:
– Pure random or feedback based is not enough
– The startup sequence improves. The feedback

method is somewhat better, but at the cost of
real-time measurements, which decreases the
run speed of the tests.

•  Conclusion: The random method with startup
sequence is the best trade-off in the current setting

9	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Outline

•  Definitions
•  Strategic decision support
•  Operational decision support
•  Making change

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Operational decisions support
– test management

•  Monitoring
–  Check status
–  Reports
–  Metrics

•  Controlling
–  Corrective actions

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Test Monitoring
•  Status

–  Coverage metrics
–  Test case metrics: development and execution
–  Test harness development

•  Efficiency / Cost metrics
–  How much time is spent?
–  How much money is spent?

•  Failure / Fault metrics
–  How much is accomplished?
–  What is the quality status of the software?

•  Effectiveness metrics
–  How effective is the testing techniques in detecting

defects?

Metrics	

Estimation	

Cost	

Stop?	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Operational decision support
based on specific model

10	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Goal

•  Quantified management decision support
•  Understanding of observed phenomena

”At delivery date – how
many defects remain?”
”How come defects are
found later for A than B”	

SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. 2007; 12: 125–140
Published online 21 December 2006 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/spip.311

A Spiral Process Model for
Case Studies on Software
Quality Monitoring –
Method and Metrics

Research Section
Carina Andersson*,† and Per Runeson
Department of Communication Systems, Lund University, Sweden

This article presents a spiral process model for an iterative case study on quality monitoring,
conducted in an industrial environment. In a highly iterative project, everything seems to
happen at the same time: analysis, design and testing. We propose a spiral process model for
case studies, and present a study conducted according to the proposed process. In the study,
metrics collected from three software development projects are analysed to investigate which
characteristics are stable across projects and feature groups of the product. The contribution
of the article is multi-fold, detailing the case study methodology used with its sub-goals and
procedures. Furthermore, the article presents the metrics collected and the results as such
from the case study, which gives insights into a complex development environment and the
trends of the retrieved data. The analysed data serve as feedback to the project staff to facilitate
identification of software process improvement. The data have also been used for defect
prediction. Copyright 2006 John Wiley & Sons, Ltd.

KEY WORDS: spiral process model; case study; empirical research; software faults

1. INTRODUCTION

A clear understanding of the software development
process and its activities is necessary to successfully
produce quality products and to manage contin-
uous software process improvement. To develop
large software products poses challenges, one of
which is a large amount of change requests. A
common solution is to move to a more itera-
tive development process, where the changes in
requirements, design and implementation can be

∗ Correspondence to: Carina Andersson, Department of Com-
munication Systems, Lund University, Box 118, 221 00
Lund, Sweden
†E-mail: Carina.Andersson@telecom.lth.se

Copyright 2006 John Wiley & Sons, Ltd.

responded to. The iterative development environ-
ment, where the job is partitioned into smaller parts
that accommodate a repetitive delivery of incre-
ments, requires an extensive amount of planning
and understanding of the planned and unplanned
activities. Metrics and data collection have a poten-
tial for improving the understanding and control of
this development process (Pfleeger 1993), while the
research methodology of a case study could help us
in providing this understanding.

However, studying this iterative environment
calls for a corresponding case study methodology.
Hence, we have defined a spiral process model for
case studies in highly iterative development envi-
ronments. In this article, we present the process
model and a case study following its structure. The
study is conducted in an organization, developing

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Procedures

Defect���
database	

TR	

IR	
 TR	

From TR:

• Module

• Status

From IR:

• Date found

• Reporter

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Data

•  3 projects
–  Different views

•  Complete project
•  Function groups

•  Dimensions
–  Time
–  Test activity

•  Function test
•  System test
•  Operator

acceptance
•  Miscellaneous

–  Function groups

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Calendar time view

Project 2

0

200

400

600

800

1000

jun-‐03 jul-‐03 aug -‐03 sep-‐03 okt-‐03 nov-‐03 dec-‐03 jan-‐04 feb-‐04 mar-‐04 apr-‐04 maj-‐04 jun-‐04 jul-‐04 aug -‐04

M isc

OA

S T

F T

Project 1

0

200

400

600

800

1000

oct-‐02 nov-‐02 dec-‐02 jan-‐03 feb-‐03 mar-‐03 apr-‐03 maj-‐03 jun-‐03 jul-‐03 aug -‐03 sep-‐03 okt-‐03 nov-‐03 dec-‐03 jan-‐04

Project 3

0

200

400

600

800

1000

apr-‐04 maj-‐04 jun-‐04 jul-‐04 aug -‐04 sep-‐04 okt-‐04 nov-‐04 dec-‐04 jan-‐05 feb-‐05 mar-‐05 apr-‐05 maj-‐05 jun-‐05

M isc

OA

S T

F T

11	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Distribution (FT, ST, OA, Misc)

Distribution for project 1, 2 & 3	
Distribution for Violetta, Viola, Tova

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Violetta Viola Tova

Misc
OA
ST
FT

Project 2	
Project 3	
 Project 1	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Data used for prediction

•  Until Alpha: ~80% of FT faults reported
•  The distribution for (→ RTL)

FT 67%
ST 25%
OA 3%
Misc 5%

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Prediction (example)

•  At Alpha: 100 faults reported in FT
•  To expect at RTL:

– Total: 100/0.8/0.67 = 187.5

– FT: 187.5*0.67 ≈ 125
– ST: 187.5*0.25 ≈ 47
– OA: 187.5*0.03 ≈ 6
– Misc: 187.5*0.05 ≈ 9

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Group work

•  How valid are the recommendations?
•  For which companies?
•  For how long?

12	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Defect content estimation:
Basic approach

Lincoln-Peterson
estimation model

N – estimated number
of faults

n1, n2 – faults found by
reviewer 1 and 2
respectively

m2 – fault fund by both

!

ˆ N = n1 " n2

m2

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

More advanced
Capture-Recapture Models

•  Four basic models used for inspections
– Degree of freedom

•  Prerequisites for all models
– All reviewers work independently of each other
–  It is not allowed to inject or remove faults during

inspection

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Synthesized evaluations of CRC

1.  Most estimators underestimate,
2.  Mh–JK is the best estimator for software

inspections,
3.  Mh–JK is appropriate to use for four reviewers

and more,
4.  DPM is the best curve fitting method, and
5.  Capture–recapture estimators can be used

together with PBR.

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Operational decision support
based on general models
(Software Reliability Growth)

13	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Observation

Prediction

Observation

Prediction

Measurements for
software reliability

•  MTBF = Mean Time Between Failure
•  R = Probability for failure-free execution

(under specified conditions and time)

time

R

time

R

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Software reliability growth models

•  Selection of appropriate models
–  2 concave models: Goel-Okumoto, Yamada exponential
–  2 S-shaped models: Delayed S-shaped, Gompertz

•  Evaluated in terms of
–  Prediction stability
–  Curve fit

•  Applied on function test data
and system test data separately

A replicated empirical study of a selection method
for software reliability growth models

Carina Andersson

Published online: 20 October 2006
Springer Science + Business Media, LLC 2006
Editor: Pankaj Jalote

Abstract Replications are commonly considered to be important contributions to
investigate the generality of empirical studies. By replicating an original study it may be
shown that the results are either valid or invalid in another context, outside the specific
environment in which the original study was launched. The results of the replicated study
show how much confidence we could possibly have in the original study. We present a
replication of a method for selecting software reliability growth models to decide whether
to stop testing and release software. We applied the selection method in an empirical study,
conducted in a different development environment than the original study. The results of the
replication study show that with the changed values of stability and curve fit, the selection
method works well on the empirical system test data available, i.e., the method was
applicable in an environment that was different from the original one. The application of the
SRGMs to failures during functional testing resulted in predictions with low relative error,
thus providing a useful approach in giving good estimates of the total number of failures to
expect during functional testing.

Keywords Replication . Software reliability

1 Introduction

Many software reliability growth models (SRGMs) have been proposed to estimate the
reliability of a software system. Software reliability, one of the most important attributes of
software quality, is closely related to defects. It is assumed to grow as defects are corrected
and removed from the software. To estimate the remaining number of defects in a software
system under test, SRGMs can be applied to guide test management in their decisions
whether to continue or stop testing. This paper reports on a replication of a study, originally
conducted by Stringfellow and Amschler Andrews (2002), where a method for selecting
SRGMs was suggested and applied to make these release decisions.

Empir Software Eng (2007) 12:161–182
DOI 10.1007/s10664-006-9018-0

C. Andersson (*)
Department of Communication Systems, Lund University, Box 118, 221 00 Lund, Sweden
e-mail: Carina.Andersson@telecom.lth.se

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Predictions per week

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

week

cu
m

ul
at

iv
e

de
fe

ct
s

Predicted values
 from week 11

Gompertz model

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Other models

curve from system test in project 1 is obviously rather difficult to fit. According to the
original selection method, in test week 22 the delayed S-shaped model is favored, since it
gives a higher estimate than the Gompertz model, although its R-value is lower than the
Gompertz model’s.

Compared to the total number of failures reported, the predicted value of the delayed
S-shaped model had a relative error of −0.031, while the Gompertz model had a relative
error of −0.357, despite the high value for the curve fit, see Table 4.

Project 2 system test data and the results of applied SRGMs are shown in Table 5. When
applying the models to the data set, the concave models give very high estimates of the total
number of failures in the beginning of the presented test period, but have R-values above
the threshold value. During subsequent weeks, the models’ estimates are closer to more
reasonable figures, and finally also stabilize in week 27.

The delayed S-shaped model and the Gompertz model stabilize in test week 18, with
good curve fit and high R-values for both models. The delayed S-shaped model, which
gives the highest estimate of the two, predicts the total number of failures to be 1,110 in
week 18, to compare with the actual number of failures detected, 859. If the difference
between the actual number and the prediction is considered too large, the decision to
continue testing should be taken. Testing did continue for several more weeks.

In week 27, when the G-O model and the Yamada model stabilize, the original selection
method recommends the conservative choice, to follow the maximum estimate. In this case
it is the G-O model’s prediction, which is 2,320 failures to compare with the actual number
of detected failures of 1,100. The s-shaped models estimated the total number of failures to
1,160 and 1,180, rather close to the actual number of detected failures, and the estimated

Fig. 3 Plot of project 1 data (ST)
and each week’s prediction of
total number of failures, from
SRGMs not rejected

Table 4 Final estimates and error by SRGMs not rejected for project 1 (ST) at week 22

Model Estimate (true value: 585) R-value Error Relative error

Delayed S-shaped 567 0.9971 −18 −0.031
Gompertz 376 0.9987 −209 −0.357

Empir Software Eng (2007) 12:161–182 171

values had been stable for several weeks (see Fig. 4). In Fig. 4, the predictions of the s-
shaped models are shown from week 11. These stabilize already in week 15 (not presented
in Table 5, since 60% of the planned testing was not completed at that time). Figure 4 also
shows the predictions of the G-O model and the Yamada model (giving nearly the same
estimates), starting in week 23.

After week 27 and ship date, the total number of failures detected was 1330! 1100 ¼ 230.
An amount well below the prediction from the G-O model, but also a little higher than the
predictions from the s-shaped models. The values of relative error are presented in Table 6,
where also the R-values are presented. These indicated good curve fit for each model, although
the predictions were not very good.

Project 3 system test data and SRGMs model results are shown in Table 7. The selection
method did not reject any of the SRGMs for the data. However, as soon as week 17, the two
concave models have good curve fits, with the highest R-values (the G-O model and the

Table 5 Predicted total number of failures for project 2 (ST)

Test week
ST (FT)

Failures
found

G-O Delayed S-shaped Gompertz Yamada

Estimate R-value Estimate R-value Estimate R-value Estimate R-value

17 (36) 822 156,000 0.9964 1,100 0.9970 1,080 0.9981 137,900 0.9965
18 (37) 859 167,000 0.9966 1,110(S) 0.9974 1,080 (S) 0.9983 52,770 0.9966
19 (38) 880 33,300 0.9961 1,110 0.9977 1,070 0.9985 10,690 0.9961
20 (39) 899 7,280 0.9954 1,110 0.9979 1,060 0.9986 5,774 0.9954
21 (40) 925 4,420 0.9949 1,110 0.9981 1,060 0.9987 4,406 0.9950
22 (41) 950 3,370 0.9946 1,110 0.9983 1,070 0.9989 3,373 0.9946
23 (42) 992 2,980 0.9948 1,120 0.9983 1,080 0.9988 2,979 0.9948
24 (43) 1,027 2,770 0.9951 1,140 0.9982 1,110 0.9986 2,767 0.9951
25 (44) 1,043 2,560 0.9952 1,150 0.9982 1,120 0.9986 2,557 0.9952
26 (45) 1,069 2,410 0.9954 1,160 0.9981 1,140 0.9985 2,409 0.9954
27 (46) 1,100 2,320 (S) 0.9957 1,180 0.9980 1,160 0.9983 2,318 (S) 0.9957

Fig. 4 Plot of project 2 data (ST)
and each week’s prediction of
total number of failures,
of SRGMs not rejected

172 Empir Software Eng (2007) 12:161–182

14	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Group work

•  How valid is the information gained using
quantiative models?

•  How relevant are they?
•  What is the alternative?

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Outline

•  Definitions
•  Strategic decision support
•  Operational decision support
•  Making change

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Test process monitoring

Setting goals
and scope

Data collection

Data filtering

Analysis

Presentation of
analysis
Interpretation

Root cause
analysis

SPI actions

Exploratory
Explanatory

Confirm
atory

Areas of responsibility:
Researchers
Researchers and
company
Company

SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. 2007; 12: 125–140
Published online 21 December 2006 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/spip.311

A Spiral Process Model for
Case Studies on Software
Quality Monitoring –
Method and Metrics

Research Section
Carina Andersson*,† and Per Runeson
Department of Communication Systems, Lund University, Sweden

This article presents a spiral process model for an iterative case study on quality monitoring,
conducted in an industrial environment. In a highly iterative project, everything seems to
happen at the same time: analysis, design and testing. We propose a spiral process model for
case studies, and present a study conducted according to the proposed process. In the study,
metrics collected from three software development projects are analysed to investigate which
characteristics are stable across projects and feature groups of the product. The contribution
of the article is multi-fold, detailing the case study methodology used with its sub-goals and
procedures. Furthermore, the article presents the metrics collected and the results as such
from the case study, which gives insights into a complex development environment and the
trends of the retrieved data. The analysed data serve as feedback to the project staff to facilitate
identification of software process improvement. The data have also been used for defect
prediction. Copyright 2006 John Wiley & Sons, Ltd.

KEY WORDS: spiral process model; case study; empirical research; software faults

1. INTRODUCTION

A clear understanding of the software development
process and its activities is necessary to successfully
produce quality products and to manage contin-
uous software process improvement. To develop
large software products poses challenges, one of
which is a large amount of change requests. A
common solution is to move to a more itera-
tive development process, where the changes in
requirements, design and implementation can be

∗ Correspondence to: Carina Andersson, Department of Com-
munication Systems, Lund University, Box 118, 221 00
Lund, Sweden
†E-mail: Carina.Andersson@telecom.lth.se

Copyright 2006 John Wiley & Sons, Ltd.

responded to. The iterative development environ-
ment, where the job is partitioned into smaller parts
that accommodate a repetitive delivery of incre-
ments, requires an extensive amount of planning
and understanding of the planned and unplanned
activities. Metrics and data collection have a poten-
tial for improving the understanding and control of
this development process (Pfleeger 1993), while the
research methodology of a case study could help us
in providing this understanding.

However, studying this iterative environment
calls for a corresponding case study methodology.
Hence, we have defined a spiral process model for
case studies in highly iterative development envi-
ronments. In this article, we present the process
model and a case study following its structure. The
study is conducted in an organization, developing

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

EBSE
1.  Convert problem into a

question
2.  Search the literature for the

best available evidence
3.  Critically appraise the

evidence
4.  Integrate with customer’s

values and circumstances
5.  Evaluate performance and

seek ways to improve it

5 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

whether to adopt a new technology because
there’s little objective evidence to confirm its
suitability, limits, qualities, costs, and inherent
risks. This can lead to poor decisions about
technology adoption, as Marvin Zelkowitz,
Dolores Wallace, and David Binkley describe:

Software practitioners and managers seeking
to improve the quality of their software devel-
opment processes often adopt new technolo-
gies without sufficient evidence that they will

be effective, while other technologies are ig-
nored despite the evidence that they most
probably will be useful.1

For instance, enthusiasts of object-oriented
programming were initially keen to promote
the value of hierarchical models. Only later did
experimental evidence reveal that deep hierar-
chies are more error prone than shallow ones.

In contrast, medical practice has changed
dramatically during the last decade as a result
of adopting an evidence-based paradigm. In
the late ’80s and early ’90s, studies showed
that failure to undertake systematic reviews of
medical research could cost lives and that ex-
perts’ clinical judgment compared unfavor-
ably with the results of systematic reviews.
Since then, many medical researchers have

focus 2
Evidence-Based
Software Engineering
for Practitioners

S
oftware managers and practitioners often must make decisions
about what technologies to employ on their projects. They might
be aware of problems with their current development practices
(for example, production bottlenecks or numerous defect reports

from customers) and want to resolve them. Or, they might have read about
a new technology and want to take advantage of its promised benefits.
However, practitioners can have difficulty making informed decisions about

evidence-based software engineering

Software engineers might make incorrect decisions about
adopting new techniques if they don’t consider scientific
evidence about the techniques’ efficacy. They should consider
using procedures similar to ones developed for evidence-
based medicine.

Tore Dybå, Simula Research Laboratory and SINTEF Information and Communication Technology

Barbara A. Kitchenham, National Information and Communications Technology Australia
and Keele University

Magne Jørgensen, Simula Research Laboratory

15	

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

8 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E

technology transfer model that embodies this
philosophy. We initiated this partnership to
conduct industry-relevant research in require-
ments engineering and product management.
Technology transfer in this context is a prereq-
uisite: it validates academic research results in
a real setting, and it provides a way to improve
industry development and business processes.

Our model involves seven steps, each build-
ing on the ones before it. Although previous
transfer models, such as the one by Shari Law-
rence Pfleeger,1 inspired our model, its complete
development evolved over time. These steps
emerged during a long-term joint commitment,
and we added new steps, as needed, along the
way. This evolution also dictated the activities
we performed in each step. For example, the
best way to validate new technology depends
on the company’s needs and which validation
processes the company trusts, as well as the re-
searchers’ need to validate new technology for
academic purposes. Considering industry pref-

erences when performing validation is impor-
tant for success.2

In this article, we present our technology
transfer model, and we report our experiences
and lessons learned for each of the seven steps
involved. Figure 1 outlines this model, show-
ing how all seven steps are relevant and inter-
dependent for overall transfer success.

Step 1: Identify potential
improvement areas based
on industry needs

We began by assessing current practices,
observing domain and business settings, and
identifying the demands imposed on industry.3

Observation of the real world before formu-
lating research questions is critical.4 Research
must connect to the needs that on-site practi-
tioners perceive, or their commitment could be
difficult to obtain.

During this stage, we identified several po-
tential areas for improvement in product

feature
A Model for Technology
Transfer in Practice

T
echnology transfer, and thus industry-relevant research, involves
more than merely producing research results and delivering them
in publications and technical reports. It demands close coopera-
tion and collaboration between industry and academia through-

out the entire research process. During research conducted in a partnership be-
tween Blekinge Institute of Technology and two companies, Danaher Motion
Särö AB (DHR) and ABB (see the “Industry Partners” sidebar), we devised a

technology transfer

Tony Gorschek and Claes Wohlin, Blekinge Institute of Technology

Per Garre, Danaher Motion Särö AB

Stig Larsson, ABB Corporate Research

Successful
technology transfer
requires close
cooperation and
collaboration
between researchers
and practitioners.
A seven-step
transfer model
embodying this
philosophy emerged
from two
academic-industry
partnerships.

Step 3: Formulate
a candidate solution

After establishing a research agenda, the col-
laboration with industry continued with the de-
sign of a candidate solution. We designed a re-
quirements engineering model called the
Requirements Abstraction Model (RAM).8 The
purpose of this model is to incorporate possible
solutions for many of the needs identified during
the assessments at DHR and ABB; it primarily
offers product planning and product manage-
ment support. RAM is a multilevel requirements
abstraction model, with a supporting process
that aids practitioners in handling requirements
in a structured and repeatable way during re-
quirements elicitation, analysis, refinement, and
management. The nature of the model is to use
the fact that requirements come at different ab-
straction levels instead of trying to flatten all or
mix different types in a document. Using RAM
makes requirements abstraction (checking them
against strategies) and breakdown (refinement
to a testable format) part of the analysis and re-

finement work. Hence, it’s possible to compare
and prioritize requirements, because they are
homogenous at each abstraction level

We created this candidate solution (RAM) in
collaboration with practitioners. The researchers’
main responsibility was to monitor the state of
the art in research and combine this knowledge
with new ideas and angles. Another reason to col-
laborate with practitioners is to keep research fo-
cused on real industry needs. A common problem
is that research solutions don’t fit with present
business and development methods,9,10 thus in-
creasing cost and raising the bar for technology
transfer.

Lessons learned
! Besides being a valuable resource, practition-

ers can provide a reality check, making sure
a candidate solution is realistic and fits cur-
rent practices and the company’s situation.

! In formulating a candidate solution in collab-
oration with practitioners, commitment and
trust are key. Moreover, the champions need
to communicate and share ideas and informa-
tion with colleagues, preparing for a change in
the mind-set throughout the organization.

! Creating new solutions to identified issues is
tempting. It’s important that the researchers
act as the link to the state of the art in re-
search, ensuring that techniques, processes,
and tools already developed and validated
aren’t ignored. In our case, this meant build-
ing on and refining some research results
obtained by others, and adding new tech-
nology as necessary.

Evolution and transfer preparation
through validation

As we formulated the candidate solution, we
recognized a need for evaluation. So, we intro-
duced several validation steps to accomplish this
goal. The idea is to refine the candidate solution,
test it for usability and scalability, and determine
whether it addresses the needs satisfactorily. In
addition, the validation steps gradually prepare
for technology transfer. In this case, the solution
itself must evolve on the basis of feedback from
validation, but the validation steps can also pre-
pare the company for change. Preparation
means showing the people in the organization
that using the new solution is more advanta-
geous than doing business as usual. This is crit-
ical for getting commitment to the technology
transfer—something researchers often miss.9

9 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Dynamic
validation

Static
validation

Validation
in

academia

Release
solution

Candidate
solution

Problem/
issue

Study state
of the art

Problem
formulation

1

2

3

4

5

6

7

Industry

Academia

Figure 1. Overview of research approach and technology transfer
model. 1. Identify potential improvement areas based on industry
needs, through process assessment and observation activities.
2. Formulate a research agenda using several assessments to find
research topics, and formulate problem statements while studying the
field and the domain. 3. Formulate a candidate solution in cooperation
with industry. 4. Conduct lab validation (for example, through lab
experiments). 5. Perform static validation (for example, interviews
and seminars). 6. Perform dynamic validation (for example, pilot
projects and controlled small tests). 7. Release the solution step
by step, while remaining open to smaller changes and additions.

Tech Transfer model

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Wrapping up

•  Definitions
•  Strategic decision support
•  Operational decision support
•  Making change

Lund University / Faculty of Engineering/ Department of Computer Science / Software Engineering Research Group	

Literature
Barbee E. Teasley, Laura Marie Leventhal, Clifford R. Mynatt, Diane S. Rohlman, ”Why software testing is sometimes
ineffective: Two applied studies of positive test strategy.” Journal of Applied Psychology, Vol 79(1), Feb 1994, 142-155.
Håkan Petersson, Thomas Thelin, Per Runeson and Claes Wohlin, “Capture-Recapture in Software Inspections after 10
Years Research - Theory, Evaluation and Application”, Journal of Systems and Software, 72(2):249-264, 2004.
David J. Anderson, Making the Business Case for Agile Management - Simplifying the Complex System of Software
Engineering, Motorola S3 Symposium, 2004.
Daniel Karlström and Per Runeson, “Combining Agile Methods with Stage-Gate Project Management”, IEEE Software, May/
June, pp.43-49, 2005
Tore Dybå, Barbara Kitchenham, Magne Jørgensen, Evidence-Based Software Engineering for Practitioners, IEEE
Software, January, pp 58-65, 2005
Per Runeson, Carina Andersson, Anneliese Andrews, Tomas Berling and Thomas Thelin, “What Do We Know about Defect
Detection Methods?”, IEEE Software, pp. 82-90, May/June 2006
Per Runeson, “A Survey of Unit Testing Practices”, IEEE Software, pp. 22-29, July/August 2006.
Tony Gorschek, Per Garre, Stig Larsson, Claes Wohlin, "A Model for Technology Transfer in Practice," IEEE Software, pp.
88-95, November/December, 2006
Barbara A. Kitchenham, Guidelines for performing Systematic Literature reviews in Software Engineering Version 2.3.
Technical Report S.o.C.S.a.M. Software Engineering Group, Keele University and Department of Computer Science
Carina Andersson, "A Replicated Empirical Study of a Selection Method for Software Reliability Growth Models", Empirical
Software Engineering, 12(2):161-182, April 2007
Carina Andersson and Per Runeson, “A Spiral Process Model for Case Studies on Software Quality Monitoring - Method
and Metrics”, Software Process Improvement and Practice, 12(2):125-140, 2007.
Per Runeson, Per Heed, and Alexander Westrup, A Factorial Experimental Evaluation of Automated Test Input Generation –
Java Platform Testing in Embedded Devices, PROFES 2011.
Paulo Anselmo da Mota Silveira Neto, Per Runeson, Ivan do Carmo Machado, Eduardo Santana de Almeida, Silvio Romero
de Lemos Meira, Emelie Engstrom, "Testing Software Product Lines," IEEE Software, pp. 16-20, September/October, 2011

